

Technisches Datenblatt

Ultrafuse PC GF30

Datum/Änderung: 26.01.2022 Versionsnr.: 1.1

Allgemeine Informationen

Komponenten

Polycarbonat basiertes Filament mit 30% Glasfasern für Schmelzschichtverfahren (FFF, Fused Filament Fabrication)

Produktbeschreibung

Ultrafuse® PC GF30 ist ein Polycarbonat, das mit 30 % Glasfasern verstärkt ist. Die Fasern in diesem Material wurden speziell für 3D-Druck-Filamente entwickelt und sind mit einer breiten Palette von FFF-3D-Druckern kompatibel. Aufgrund seiner extremen Steifigkeit eignet sich dieses Material hervorragend für anspruchsvolle Anwendungen. Ultrafuse® PC GF30 bietet eine hohe Festigkeit und gute Temperaturbeständigkeit. Mit seiner UV-Beständigkeit, seinem Flammschutz und der V0 Zertifizierung ist es perfekt für verschiedene industrielle Anwendungen geeignet.

Lieferform und Lagerung

Ultrafuse® PC GF30-Filamente sollten bei einer Temperatur von 15 - 25 °C in ihrer original verschlossenen Verpackung in einer sauberen und trockenen Umgebung gelagert werden. Bei Einhaltung der empfohlenen Lagerbedingungen beträgt die Mindesthaltbarkeit der Produkte 12 Monate.

Zu Ihrer Information

Wenn es geschmolzen ist, kann Ultrafuse® PC GF30 Filament aufgrund seiner Glasverstärkung abrasiv sein. Das Drucken mit Ultrafuse® PC GF30 kann die Lebensdauer von Messingdüsen und Extruderantriebsrädern verkürzen. Für eine optimale Nutzung wird die Verwendung von gehärteten Stahldüsen und Extruderantriebsrädern empfohlen.

Produktsicherheit

Empfohlen: Verarbeiten Sie das Material in einem gut belüfteten Raum oder benutzen Sie eine professionelle Absauganlage. Weitere und detailliertere Informationen finden sich in den entsprechenden Material-Sicherheitsdatenblättern (MSDS).

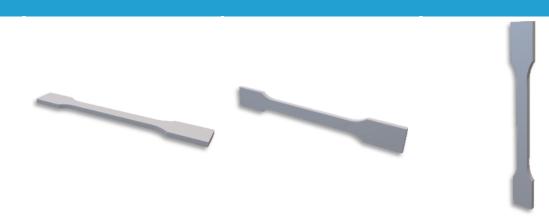
Hinweis

Die in dieser Veröffentlichung enthaltenen Daten basierend auf unseren derzeitigen Kenntnissen und Erfahrungen. Sie befreien den Verarbeiter wegen der Fülle möglicher Einflüsse bei Verarbeitung und Anwendung unseres Produkts nicht von eigenen Prüfungen und Versuchen. Eine Garantie bestimmter Eigenschaften oder die Eignung des Produktes für einen konkreten Einsatzzweck kann aus diesen Daten nicht abgeleitet werden. Alle hierin vorliegenden Beschreibungen, Zeichnungen, Fotografien, Daten, Verhältnisse, Gewichte usw. können sich ohne Vorankündigung ändern und stellen nicht die vertraglich vereinbarte Beschaffenheit des Produkts dar. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen gegenüber Dritter sind vom Empfänger unserer Produkte in eigener Verantwortung zu beachten.

Empfohlene Verarbeitungsparameter für den 3D-Druck				
Düsentemperatur	280 – 330 °C / 137,8 – 165,6 °F			
Baukammertemperatur	-			
Betttemperatur	80 – 100 °C / 26,7 – 37,8 °F			
Bettmaterial	PC Haftvermittler			
Düsendurchmesser	≥ 0.6 mm			
Druckgeschwindigkeit	30 - 60 mm/s			

Trocknungsempfehlungen	
Trocknungsempfehlungen zur Gewährleistung der Druckfähigkeit	100 °C in einem Heißlufttrockner oder Vakuumofen für 4 bis 16 Stunden

Hinweis: Das Material muss stets trocken gehalten werden, um gleichbleibende Materialeigenschaften zu gewährleisten.


Allgemeine Eigenschaften		Standard
Dichte des gedruckten Teils	1176 kg/m³ / 73,4 lb/ft³	ISO 1183-1

Thermische Eigenschaften	Standard	
HDT (Wärmeformbeständigkeitstemperatur) bei 1,8 MPa	124 °C / 255,2 °F	ISO 75-2
HDT (Wärmeformbeständigkeitstemperatur) bei 0,45 MPa	134 °C / 273,2 °F	ISO 75-2
Glasübergangstemperatur	142 °C / 287,6 °F	ISO 11357-2
Schmelztemperatur	259 °C / 498,2 °F	ISO 11357-3
Schmelze-Volumenfließrate	26 cm3/10 min / 1,6 in3/10 min (300 °C, 2,16 kg)	ISO 1133
Flammschutzklasse	V0 @ 1,5 mm und 3,0 mm Stärke	UL 94

Mechanische Eigenschaften

Druckrichtung	Norm	XY	XZ	ZX
		Flach	Am Rand	Senkrecht
Zugfestigkeit	ISO 527	36,1 MPa / 5,3 ksi	-	11,2 MPa / 1,6 ksi
Dehnfähigkeit	ISO 527	2,4 %	-	1,1 %
Elastizitätsmodul	ISO 527	2665 MPa / 386,5 ksi	-	1231 MPa / 178,5 ksi
Biegefestigkeit	ISO 178	63,4 MPa / 92 ksi	78,8 MPa / 11,4 ksi	19 MPa / 2,8 ksi
Biegeelastizitätsmodul	ISO 178	2690 MPa / 390,2 ksi	3450 MPa / 500,4 ksi	934 MPa / 135,5 ksi
Biegebeanspruchung bei Bruch	ISO 178	3,2 %	2,9 %	2,5 %
Schlagzähigkeit nach Charpy (an gekerbtem Prüfkörper)	ISO 179-2	6,1 kJ/m ²	6,5 kJ/m ²	1,8 kJ/m²
Schlagzähigkeit nach Charpy (an nicht gekerbtem Prüfkörper)	ISO 179-2	17,1 kJ/m²	18,9 kJ/m ²	3,7 kJ/m²
Schlagzähigkeit nach Izod (an gekerbtem Prüfkörper)	ISO 180	5,6 kJ/m²	5,4 kJ/m²	2,1 kJ/m²
Schlagzähigkeit nach Izod (an nicht gekerbtem Prüfkörper)	ISO 180	13,9 kJ/m²	17,8 kJ/m²	3,4 kJ/m²

BASF 3D Printing Solutions BV sales@basf-3dps.com www.forward-am.com