Model Resin

Ein schnell druckbares Material für die Herstellung von hochpräzisen Zahnersatzmodellen

Model Resin wurde entwickelt, um die Anforderungen an Präzision, Zuverlässigkeit und Durchsatz in der restaurativen Zahnheilkunde zu erfüllen. Drucken Sie präzise Modelle und Stümpfe mit Kontakten und genauen Kronenrändern und liefern Sie so hochwertige Ergebnisse in kürzester Zeit.

Kronen- und Brückenmodelle

Analoge Implantatmodelle

Kieferorthopädische Modelle

Diagnostische Modelle

FLDMBE03

* Die Verfügbarkeit kann regionsabhängig sein

Erstellt am:

11.09.2021

Revision vom:

1 11 09 2021

Nach bestem Wissen und Gewissen sind die angegebenen Informationen korrekt Dennoch übernimmt Formlabs Inc. keine explizite oder implizite Garantie für die Genauigkeit der Ergebnisse, die durch die Nutzung erzielt werden.

	ANGABE 1		IMPERIAL 1		METHODE
	Grün ²	Nachgehärtet ³	Grün ²	Nachgehärtet ³	
Mechanische Eigenschaften					
Maximale Zugfestigkeit	27 MPa	48 MPa	3970 psi	6990 psi	ASTM D 638-14
Zugmodul	1,1 GPa	2,3 GPa	160 ksi	331 ksi	ASTM D 638-14
Bruchdehnung	14 %	4,8 %	14 %	4,8 %	ASTM D 638-14
Biegeeigenschaften					
Biegebruchfestigkeit	25 MPa	85 MPa	3640 psi	12300 psi	ASTM D 790-15
Biegemodul	0,67 GPa	2,2 GPa	97 ksi	320 ksi	ASTM D 790-15
Aufpralleigenschaften					
Schlagzähigkeit nach IZOD	23 J/m	24 J/m	0,43 ft-lbs/in	0,45 ft-lbs/in	ASTM D 256-10
Schlagzähigkeit nach IZOD (ungekerbte Probe)	300 J/m	325 J/m	5,6 ft-lbs/in	6,1 ft-lbs/in	ASTM D 4812-19
Thermische Eigenschaften					
Wärmeableitung Temp. bei 1,8 MPa	41 °C	56 °C	104 °F	133 °F	ASTM D 648-16
Wärmeableitung Temp. bei 0,45 MPa	47 °C	75 °C	117 °F	167 °F	ASTM D 648-16
Wärmeausdehnung	108 μm/m/°C	76 μm/m/°C	60 μin/in/°F	43 μin/in/°F	ASTM E 813-13

Materialeigenschaften können abhängig von Druckgeometrie, Druckausrichtung, Druckeinstellungen und Temperatur variieren.

LÖSUNGSMITTELKOMPATI BILITÄT

Gewichtszunahme in Prozent über einen Zeitraum von 24 Stunden für einen gedruckten und nachgehärteten Würfel von 1 x 1 x 1 cm im jeweiligen Lösungsmittel:

Lösungsmittel	Gewichtszunahme in % über 24 h	Lösungsmittel	Gewichtszunahme in % über 24 h	
Essigsäure (5 %)	0,2	Schweres Mineralöl	0,2	
Aceton	0,9	Leichtes Mineralöl	0,2	
Bleichmittel ~5 % NaOCI	0,1	Salzlösung (3,5 % NaCl)	0,2	
Butylacetat	< 0,1	Skydrol 5	0,4	
Dieselkraftstoff	0,1	Natriumhydroxid (0,025 %, pH = 10)	0,2	
Diethylenglycolmonometh ylether	< 0,1	Starke Säure (Chlorwasserstoff)	< 0,1	
Hydrauliköl	0,1	TPM	0,2	
Wasserstoffperoxid (3 %)	0,1	Wasser	0,2	
Isooctan	< 0,1	Xylol	< 0,1	
Isopropylalkohol	< 0,1			

² Die Daten für grüne Probedrucke wurden mit Zugprobe des Typs IV ermittelt, die auf einem Form 3-Drucker mit 100 µm Model Resin gedruckt und 10 Minuten lang in ≥99%igem Isopropylalikohol gewaschen wurden.

³ Daten für nachgehärtete Proben wurden mit einer Zugprobe des Typs IV (ASTM) ermittelt, die auf einem Fom 3 Drucker mit Model Resin mit der Einstellung 100 µm gedruckt, in einem Form Wash 10 Minuten lang in ≥99%igem Isopropylalkohol gewaschen und in einem Form Cure bei 60 °C 5 Minuten lang nachgehärtet wurde.