MATERIAL DATENBLATT

BioMed Amber Resin

Biokompatibles Photopolymer-Kunstharz für Form 2 und Form 3B

BioMed Amber Resin ist für die Herstellung von biokompatiblen 3D-Druckteilen mit hoher Maßgenauigkeit, Steifigkeit und Festigkeit ausgelegt. Dieses Material wurde speziell für Formlabs Drucker entwickelt, anspruchsvollen Tests unterzogen und in einem Reinraum in unserer eigenen nach ISO 13485 zertifizierten Einrichtung hergestellt, um über Chargen hinweg eine einheitliche Qualität zu gewährleisten. Druckteile aus BioMed Amber Resin sind mit herkömmlichen Lösungsmitteldesinfektions- und Sterilisierungsmethoden kompatibel.

Bohrschablonen

Implantatschablonen

Komponenten von Medizinprodukten

Instrumentenhalterungen

Schablonen für die Implantatgröße

Anatomische Modelle zur Planung

FLBMAM01

formlabs 😿

Daten zu Materialeigenschaften

	METRISCH	IMPERIAL	METHODE
	Nachgehärtet 1,2	Nachgehärtet ^{1,2}	
Zugeigenschaften			
Maximale Zugfestigkeit	73 MPa	11 ksi	ASTM D638-10 (Type IV)
Elastizitätsmodul	2,9 GPa	420 ksi	ASTM D638-10 (Type IV)
Dehnung	12,3 %	12,3 %	ASTM D638-10 (Type IV)
Biegeeigenschaften			
Biegebruchfestigkeit	103 MPa	15 ksi	ASTM D790-15 (Method B)
Biegemodul	2,5 GPa	363 ksi	ASTM D790-15 (Method B)
Härteeigenschaften			
Shore-Härte D	67 D	67 D	ASTM D2240-15 (Type D)
Aufpralleigenschaften			
Schlagzähigkeit nach IZOD	28 J/m	0,53 lbf/in	ASTM D256-10 (2018, Method A)
Schlagzähigkeit nach IZOD (ungekerbte Probe)	142 J/m	2,6 ft/lbf/in	ASTM D4812-11
Thermische Eigenschaften			
Wärmeformbeständigkeitstemperatur bei 1,8 MPa	65 °C	149 °F	ASTM D648-18 (Method B)
Wärmeformbeständigkeitstemperatur bei 0,45 MPa	78 °C	172 °F	ASTM D648-18 (Method B)
Wärmeausdehnungskoeffizient	66 μm/m/°C	37 μin/in/°F	ASTM E831-14

Kompatibilität mit Desinfektionsmitteln

Chemische Desinfektion	70%iger Isopropylalkohol für 5 Minuten	
Kompatibilität mit Sterilisation		
F-Beam	35 kGy E-Beam (Elektronenstrahl)	
Ethylenoxid	100% Ethylenoxid für 180 Minuten bei 55 °C	
Gamma	29,4–31,2 kGy Gammastrahlung	
Dampfsterilisation	Autoklavierbar für 20 Minuten bei 134°C, Autoklavierbar für 30 Minuten bei 121°C	

BioMed Amber Resin wurde gemäß ISO 10993-1:2018 Biologische Beurteilung von Medizinprodukten – Teil 1: Beurteilung und Prüfungen im Rahmen eines Risikomanagementsystems und ISO 7405:2009/(R)2015 Zahnheilkunde – Beurteilung der Biokompatibilität von in der Zahnheilkunde verwendeten Medizinprodukten geprüft und erfüllt die Anforderungen für folgende Biokompatibilitätsrisiken:

ISO-Norm	Beschreibung ³
EN ISO 10993-5:2009	Nicht zytotoxisch
ISO 10993-10:2010/(R)2014	Nicht reizend
ISO 10993-10:2010/(R)2014	kein Sensibilisator

Das Produkt erfüllt bei Entwicklung und Anwendung die folgenden ISO-Normen:

ISO-Norm	Beschreibung
EN ISO 13485:2016	Medizinprodukte – Qualitätsmanagementsysteme – Anforderungen für regulatorische Zwecke
EN ISO 14971:2012	Medizinprodukte – Anwendung des Risikomanagements auf Medizinprodukte

ANMERKUNGEN:

¹Materialeigenschaften können abhängig von Druckgeometrie, Druckausrichtung, Druckeinstellungen, Temperatur und Desinfektions- oder Sterilisationsmethoden variieren.

² Daten für nachgehärtete Proben wurden mit einer Zugprobe des Typs IV (ASTM) ermittelt, die auf einem Form 2 und Form 3B-Drucker (Messwerte für thermische und Aufpralleigenschaften) mit BioMed Amber Resin mit der Einstellung 100 µm gedruckt, in einem Form Wash 20 Minuten lang in 99%igem Isopropylalkohol gewaschen und in einem Form Cure 30 Minuten lang bei 60 °C nachgehärtet wurde.

 $^{^{\}rm 3}$ BioMed Amber Resin wurde am Hauptsitz von NAMSA in Northwood, OH, USA, getestet.